Sex as Gibbs Sampling: a probability model of evolution
نویسندگان
چکیده
We show that evolution can be modelled as fitting a probability model using standard Markov-chain Monte-Carlo (MCMC) sampling. With some care, ‘genetic algorithms’ can be constructed that are reversible Markov chains that satisfy detailed balance; it follows that the stationary distribution of populations is a Gibbs distribution in a simple factorised form. For some standard and popular nonparametric probability models, we exhibit Gibbssampling procedures that are plausible genetic algorithms. At mutationselection equilibrium, a population of genomes is analogous to a sample from a Bayesian posterior, and the genomes are analogous to latent variables. We suggest this is a general, tractable, and insightful formulation of evolutionary computation in terms of standard machine learning concepts and techniques. In addition, we show that evolutionary processes in which selection acts by differences in fecundity are not reversible, and also that it is not possible to construct reversible evolutionary models in which each child is produced by only two parents.
منابع مشابه
Template Based Gibbs Probability Distributions for Texture Modeling and Segmentation
We present a new approach for texture modeling, which joins two ideas: well defined patterns used as "elementary texture elements" and statistical modeling based on Gibbs probability distributions. The developed model is useful for a wide range of textures. Within the scope of the method it is possible to pose such tasks as e.g. learning the parameters of the prior model, texture synthesis and ...
متن کاملGeometric Ergodicity of Gibbs Samplers
Due to a demand for reliable methods for exploring intractable probability distributions, the popularity of Markov chain Monte Carlo (MCMC) techniques continues to grow. In any MCMC analysis, the convergence rate of the associated Markov chain is of practical and theoretical importance. A geometrically ergodic chain converges to its target distribution at a geometric rate. In this dissertation,...
متن کاملEstimating Markov Switching model using Gibbs sampling
The objective of this paper is to provide readers with the program to estimate a Markov switching model with time varying transition probability(Filardo, 1994) by using a statistical computing software R. Although many of the previous studies estimating the model have conducted the estimation by the maximum likelihood estimation, this paper utilizes Gibbs sampling method. Using Gibbs sampling m...
متن کاملA stochastic model for the evolution of metabolic networks with neighbor dependence
MOTIVATION Most current research in network evolution focuses on networks that follow a Duplication Attachment model where the network is only allowed to grow. The evolution of metabolic networks, however, is characterized by gain as well as loss of reactions. It would be desirable to have a biologically relevant model of network evolution that could be used to calculate the likelihood of homol...
متن کاملComparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome
Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data. Methods: This study use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1402.2704 شماره
صفحات -
تاریخ انتشار 2014